The ENERGY sector

The variables

Vensim name Name Used variables Used parameters Variables using it Initial value Equation
ACcumulated Sun and Wind Capacity from 1980 GW ACSWCF ASWC NDSWC 10.0 \(\frac{\mathrm{d}\mathtt{ACSWCF}\left(t\right)}{\mathrm{d}t}=\mathtt{ASWC}\left(t\right)\)
Addition of fossil el capacity GW/y AFEC DFECC FEC CAPEXFEG \(\mathtt{AFEC}\left(t\right)=\mathtt{max}\left(0,\mathtt{DFECC}\left(t\right)\right)\)
Addition of renewable el capacity GW/y AREC DRECC DIREC RECT REC ASWC CAPEXREG \(\mathtt{AREC}\left(t\right)=\mathtt{max}\left(0,\frac{\mathtt{DRECC}\left(t\right)}{\mathtt{RECT}}+\mathtt{DIREC}\left(t\right)\right)\)
Addition of sun and wind capacity GW/y ASWC AREC ACSWCF \(\mathtt{ASWC}\left(t\right)=\mathtt{AREC}\left(t\right)\)
CAPEX fossil el GDollar/y CAPEXFEG AFEC CAPEXFED CFE \(\mathtt{CAPEXFEG}\left(t\right)=\mathtt{CAPEXFED}\cdot\mathtt{AFEC}\left(t\right)\)
CAPEX renewable el dollar/W CAPEXRED CISWC CAPEXRE1980 CAPEXREG \(\mathtt{CAPEXRED}\left(t\right)=\mathtt{CAPEXRE1980}\cdot\mathtt{CISWC}\left(t\right)\)
CAPEX renewable el Gdollar/y CAPEXREG CAPEXRED AREC CRE \(\mathtt{CAPEXREG}\left(t\right)=\mathtt{AREC}\left(t\right)\cdot\mathtt{CAPEXRED}\left(t\right)\)
Cost of CCS GDollar/y CCCSG ICCSC CCCSt CE \(\mathtt{CCCSG}\left(t\right)=\mathtt{CCCSt}\cdot\mathtt{ICCSC}\left(t\right)\)
Cost of energy GDollar/y CE CG CFFFNEU CAC CCCSG CEL CNE RECTEC CESGDP ECETSGDP CFETA \(\mathtt{CE}\left(t\right)=\mathtt{CAC}\left(t\right)+\mathtt{CCCSG}\left(t\right)+\mathtt{CEL}\left(t\right)+\mathtt{CFFFNEU}\left(t\right)+\mathtt{CG}\left(t\right)+\mathtt{CNE}\left(t\right)\)
Cost of electricity GDollar/y CEL CRE CFE CNEL CE \(\mathtt{CEL}\left(t\right)=\mathtt{CFE}\left(t\right)+\mathtt{CNEL}\left(t\right)+\mathtt{CRE}\left(t\right)\)
Cost of energy as share of GDP (1) CESGDP CE GDP \(\mathtt{CESGDP}\left(t\right)=\frac{\mathtt{CE}\left(t\right)}{\mathtt{GDP}\left(t\right)}\)
Cost of fossil electricity GDollar/y CFE OPEXFEG CAPEXFEG CEL \(\mathtt{CFE}\left(t\right)=\mathtt{CAPEXFEG}\left(t\right)+\mathtt{OPEXFEG}\left(t\right)\)
Cost of Fossil Fuel For Non-El Use Gdollar/y CFFFNEU DFFFNEU TCFFFNEU CE \(\mathtt{CFFFNEU}\left(t\right)=\frac{1}{1000}\cdot\mathtt{TCFFFNEU}\cdot\mathtt{DFFFNEU}\left(t\right)\)
Cost of grid GDollar/y CG EP TC CE \(\mathtt{CG}\left(t\right)=\mathtt{TC}\cdot\mathtt{EP}\left(t\right)\)
Cost index for sun and wind capacity (1) CISWC NDSWC CRDSWC CAPEXRED \(\mathtt{CISWC}\left(t\right)=\left(1-\mathtt{CRDSWC}\right)^{\mathtt{NDSWC}\left(t\right)}\)
Cost of new electrification GDollar/y CNE ERDNEFFFNE ECRUNEFF CE \(\mathtt{CNE}\left(t\right)=\frac{1}{1000}\cdot\mathtt{ECRUNEFF}\cdot\mathtt{ERDNEFFFNE}\left(t\right)\)
Cost of Nuclear ELectricity Gdollar/y CNEL NEP CNED CEL \(\mathtt{CNEL}\left(t\right)=\mathtt{CNED}\cdot\mathtt{NEP}\left(t\right)\)
CO2 from energy and industry GtCO2/y CO2EI CO2EP CO2NFIP CO2E CO2EMPP \(\mathtt{CO2EI}\left(t\right)=\mathtt{CO2EP}\left(t\right)+\mathtt{CO2NFIP}\left(t\right)\)
CO2 EMissions per person tCO2/y CO2EMPP POP CO2EI \(\mathtt{CO2EMPP}\left(t\right)=\frac{1000\cdot\mathtt{CO2EI}\left(t\right)}{\mathtt{POP}\left(t\right)}\)
CO2 from energy production GtCO2/y CO2EP UFF TCO2PT FCO2SCCS CO2EI ICCSC \(\mathtt{CO2EP}\left(t\right)=\frac{1}{1000}\cdot\left(1-\mathtt{FCO2SCCS}\left(t\right)\right)\cdot\mathtt{TCO2PT}\left(t\right)\cdot\mathtt{UFF}\left(t\right)\)
CO2 from non-fossil industrial processes GtCO2/y CO2NFIP POP NFCO2PP FCO2SCCS CO2EI ICCSC \(\mathtt{CO2NFIP}\left(t\right)=\frac{1}{1000}\cdot\left(1-\mathtt{FCO2SCCS}\left(t\right)\right)\cdot\mathtt{NFCO2PP}\left(t\right)\cdot\mathtt{POP}\left(t\right)\)
Cost of renewable electricity GDollar/y CRE CAPEXREG OPEXREG CEL \(\mathtt{CRE}\left(t\right)=\mathtt{CAPEXREG}\left(t\right)+\mathtt{OPEXREG}\left(t\right)\)
Demand for electricity TWh/y DE DEBNE EIDEFNE DSRE DFE ELB \(\mathtt{DE}\left(t\right)=\mathtt{DEBNE}\left(t\right)+\mathtt{EIDEFNE}\left(t\right)\)
Demand for electricity before NE TWh/y DEBNE POP TPPUEBEE EEPI2022 NIEE DE TCEG TGC \(\mathtt{DEBNE}\left(t\right)=\frac{\mathtt{POP}\left(t\right)\cdot\mathtt{TPPUEBEE}\left(t\right)\cdot e^{-\mathtt{NIEE}\cdot\left(-2000+t\right)}}{\mathtt{EEPI2022}\left(t\right)}\)
Demand for fossil electricity TWh/y DFE LCEP DE DFEC FCUT \(\mathtt{DFE}\left(t\right)=\mathtt{max}\left(0,-\mathtt{LCEP}\left(t\right)+\mathtt{DE}\left(t\right)\right)\)
Desired fossil el capacity GW DFEC DFE EKHPY DFECC \(\mathtt{DFEC}\left(t\right)=\frac{\mathtt{DFE}\left(t\right)}{\mathtt{EKHPY}}\)
Desired fossil el capacity change GW/y DFECC DIFEC FEC DFEC FECCT AFEC \(\mathtt{DFECC}\left(t\right)=\frac{-\mathtt{FEC}\left(t\right)+\mathtt{DFEC}\left(t\right)}{\mathtt{FECCT}}+\mathtt{DIFEC}\left(t\right)\)
Demand for fossil fuel for non-el use Mtoe/y DFFFNEU ERDNEFFFNE DFFNEUBNE UFF EU CFFFNEU \(\mathtt{DFFFNEU}\left(t\right)=-\mathtt{ERDNEFFFNE}\left(t\right)+\mathtt{DFFNEUBNE}\left(t\right)\)
Demand for fossil fuel for non-el use before NE Mtoe/y DFFNEUBNE POP TPPUFFNEUBEE EEPI2022 NIEE ERDNEFFFNE DFFFNEU TCFFFNEUG \(\mathtt{DFFNEUBNE}\left(t\right)=\frac{\mathtt{POP}\left(t\right)\cdot\mathtt{TPPUFFNEUBEE}\left(t\right)\cdot e^{-\mathtt{NIEE}\cdot\left(-2000+t\right)}}{\mathtt{EEPI2022}\left(t\right)}\)
DIscard of Fossil El Capacity GW/y DIFEC LFEC FEC FEC DFECC \(\mathtt{DIFEC}\left(t\right)=\frac{\mathtt{FEC}\left(t\right)}{\mathtt{LFEC}\left(t\right)}\)
Discard of renewable el capacity GW/y DIREC REC LREC REC AREC \(\mathtt{DIREC}\left(t\right)=\frac{\mathtt{REC}\left(t\right)}{\mathtt{LREC}}\)
Desired renewable el capacity GW DREC DSRE RCUT DRECC \(\mathtt{DREC}\left(t\right)=\frac{\mathtt{DSRE}\left(t\right)}{\mathtt{RCUT}}\)
Desired renewable el capacity change GW DRECC DREC REC AREC \(\mathtt{DRECC}\left(t\right)=-\mathtt{REC}\left(t\right)+\mathtt{DREC}\left(t\right)\)
Desired renewable electricity share (1) DRES IPP REFF1980 GREF REFF2022 DSRE \(\mathtt{DRES}\left(t\right)=\mathtt{REFF1980}+\mathtt{ramp}\left(t,\frac{\mathtt{GREF}-\mathtt{REFF2022}}{\mathtt{IPP}\left(t\right)},2000,2000+\mathtt{IPP}\left(t\right)\right)+\mathtt{ramp}\left(t,\frac{1}{42}\cdot\left(\mathtt{REFF2022}-\mathtt{REFF1980}\right),2000,2000\right)\)
Desired supply of renewable electricity TWh/y DSRE DRES DE DREC \(\mathtt{DSRE}\left(t\right)=\mathtt{DE}\left(t\right)\cdot\mathtt{DRES}\left(t\right)\)
Extra cost of Energy Turnaround as share of GDP (1) ECETSGDP CE GDP TCEN \(\mathtt{ECETSGDP}\left(t\right)=\mathtt{ifelse}\left(\left(t>2000\right),\frac{-\mathtt{TCEN}\left(t\right)+\mathtt{CE}\left(t\right)}{\mathtt{GDP}\left(t\right)},0\right)\)
Extra energy productivity index 2022=1 EEPI2022 IEEPI DEBNE DFFNEUBNE 1.0 \(\frac{\mathrm{d}\mathtt{EEPI2022}\left(t\right)}{\mathrm{d}t}=\mathtt{IEEPI}\left(t\right)\)
Extra increase in demand for electricity from NE TWh/y EIDEFNE ERDNEFFFNE EUEPRUNEFF DE \(\mathtt{EIDEFNE}\left(t\right)=\mathtt{EUEPRUNEFF}\cdot\mathtt{ERDNEFFFNE}\left(t\right)\)
ELectricity balance (1) ELB EP DE \(\mathtt{ELB}\left(t\right)=\frac{\mathtt{EP}\left(t\right)}{\mathtt{DE}\left(t\right)}\)
Electricity production TWh/y EP NEP REP FEP ELB FFPNE EU CG \(\mathtt{EP}\left(t\right)=\mathtt{FEP}\left(t\right)+\mathtt{NEP}\left(t\right)+\mathtt{REP}\left(t\right)\)
Extra reduction in demand for non-el fossil fuel from NE Mtoe/y ERDNEFFFNE FNE DFFNEUBNE CNE EIDEFNE DFFFNEU \(\mathtt{ERDNEFFFNE}\left(t\right)=\mathtt{DFFNEUBNE}\left(t\right)\cdot\mathtt{FNE}\left(t\right)\)
Energy use Mtoe/y EU EP RHP FTWEPMt DFFFNEU EUPP \(\mathtt{EU}\left(t\right)=\frac{\mathtt{EP}\left(t\right)}{\mathtt{FTWEPMt}\left(t\right)}+\mathtt{DFFFNEU}\left(t\right)+\mathtt{RHP}\left(t\right)\)
Energy use per person toe/p/y EUPP POP EU \(\mathtt{EUPP}\left(t\right)=\frac{\mathtt{EU}\left(t\right)}{\mathtt{POP}\left(t\right)}\)
Fraction of CO2-sources with CCS (1) FCO2SCCS IPP GFCO2SCCS FCO2SCCS2022 CO2NFIP CO2EP ICCSC \(\mathtt{FCO2SCCS}\left(t\right)=\mathtt{FCO2SCCS2022}+\mathtt{ramp}\left(t,\frac{\mathtt{GFCO2SCCS}-\mathtt{FCO2SCCS2022}}{\mathtt{IPP}\left(t\right)},2000,2000+\mathtt{IPP}\left(t\right)\right)\)
Fossil capacity up-time kh/y FCUT FEC DFE FCUTLOFC FEP \(\mathtt{FCUT}\left(t\right)=\frac{\mathtt{DFE}\left(t\right)}{\mathtt{FEC}\left(t\right)}\)
FCUTeoLOFC (1) FCUTLOFC FCUT sFCUTLOFC EKHPY LFEC \(\mathtt{FCUTLOFC}\left(t\right)=1+\mathtt{sFCUTLOFC}\cdot\left(-1+\frac{\mathtt{FCUT}\left(t\right)}{\mathtt{EKHPY}}\right)\)
Fossil electricity capacity GW FEC AFEC DIFEC DFECC DIFEC FCUT FEP 980.0 \(\frac{\mathrm{d}\mathtt{FEC}\left(t\right)}{\mathrm{d}t}=-\mathtt{DIFEC}\left(t\right)+\mathtt{AFEC}\left(t\right)\)
Fossil Electricity Production TWh/y FEP FCUT FEC OPEXFEG EP FFPNE FFE \(\mathtt{FEP}\left(t\right)=\mathtt{FCUT}\left(t\right)\cdot\mathtt{FEC}\left(t\right)\)
Fossil fuels for electricity Mtoe/y FFE FEP FTWEPMt UFF \(\mathtt{FFE}\left(t\right)=\frac{\mathtt{FEP}\left(t\right)}{\mathtt{FTWEPMt}\left(t\right)}\)
Fraction fossil plus nuclear electricity (1) FFPNE NEP FEP EP \(\mathtt{FFPNE}\left(t\right)=\frac{\mathtt{FEP}\left(t\right)+\mathtt{NEP}\left(t\right)}{\mathtt{EP}\left(t\right)}\)
Fraction new electrification (1) FNE IPP GFNE FNE2022 FNE1980 ERDNEFFFNE \(\mathtt{FNE}\left(t\right)=\mathtt{FNE1980}+\mathtt{ramp}\left(t,\frac{1}{42}\cdot\left(\mathtt{FNE2022}-\mathtt{FNE1980}\right),2000,2000\right)+\mathtt{ramp}\left(t,\frac{\mathtt{GFNE}-\mathtt{FNE2022}}{\mathtt{IPP}\left(t\right)},2000,2000+\mathtt{IPP}\left(t\right)\right)\)
4 TWh-el per Mtoe FTWEPMt TWEPEJEE MTPEJCE EU FFE \(\mathtt{FTWEPMt}\left(t\right)=\frac{\mathtt{TWEPEJEE}\left(t\right)}{\mathtt{MTPEJCE}}\)
Green hydrogen MtH2/y GHMH2 REP FREH KWEPKGH2 GHMt \(\mathtt{GHMH2}\left(t\right)=\frac{\mathtt{FREH}\cdot\mathtt{REP}\left(t\right)}{\mathtt{KWEPKGH2}}\)
Green hydrogen Mtoe/y GHMt GHMH2 TPTH2 RHP \(\mathtt{GHMt}\left(t\right)=\mathtt{TPTH2}\cdot\mathtt{GHMH2}\left(t\right)\)
Installed CCS capacity GtCO2/y ICCSC CO2EP CO2NFIP FCO2SCCS CCCSG \(\mathtt{ICCSC}\left(t\right)=\frac{\left(\mathtt{CO2EP}\left(t\right)+\mathtt{CO2NFIP}\left(t\right)\right)\cdot\mathtt{FCO2SCCS}\left(t\right)}{1-\mathtt{FCO2SCCS}\left(t\right)}\)
Increase in extra energy productivity index 1/y IEEPI EROCEPA2022 EEPI2022 \(\mathtt{IEEPI}\left(t\right)=\mathtt{ifelse}\left(\left(t\geq2000\right),\mathtt{EROCEPA2022},0\right)\)
IIASA Fossil energy production EJ/yr IIASAFEP UFF MTPEJCE \(\mathtt{IIASAFEP}\left(t\right)=\frac{\mathtt{UFF}\left(t\right)}{\mathtt{MTPEJCE}}\)
IIASA Renewable energy production EJ/yr IIASAREP REP RHP TWEPEJEE MTPEJCE \(\mathtt{IIASAREP}\left(t\right)=\frac{\mathtt{REP}\left(t\right)}{\mathtt{TWEPEJEE}\left(t\right)}+\frac{\mathtt{RHP}\left(t\right)}{\mathtt{MTPEJCE}}\)
Low-carbon el production TWh/y LCEP NEP REP DFE \(\mathtt{LCEP}\left(t\right)=\mathtt{NEP}\left(t\right)+\mathtt{REP}\left(t\right)\)
Life of fossil el capacity y LFEC FCUTLOFC NLFEC DIFEC \(\mathtt{LFEC}\left(t\right)=\mathtt{NLFEC}\cdot\mathtt{FCUTLOFC}\left(t\right)\)
Nuclear capacity GW NC NEP \(\mathtt{withlookup}(t, [(1980.0, 75.0), (2000.0, 310.0), (2020.0, 310.0), (2098.9, 310.0)])\)
Number of doublings in sun and wind capacity (1) NDSWC ACSWCF SWC1980 CISWC \(\mathtt{NDSWC}\left(t\right)=0.69+\log\left(\frac{\mathtt{ACSWCF}\left(t\right)}{\mathtt{SWC1980}}\right)\)
Nuclear electricity production TWh/y NEP NC NCUT CNEL LCEP EP FFPNE \(\mathtt{NEP}\left(t\right)=\mathtt{NCUT}\cdot\mathtt{NC}\left(t\right)\)
Non-fossil CO2 per person tCO2/p/y NFCO2PP GDPP MNFCO2PP CO2NFIP \(\mathtt{NFCO2PP}\left(t\right)=\mathtt{MNFCO2PP}\cdot\left(1-e^{-\frac{1}{10}\cdot\mathtt{GDPP}\left(t\right)}\right)\)
OPEX fossil el GDollar/y OPEXFEG FEP OPEXFED CFE \(\mathtt{OPEXFEG}\left(t\right)=\mathtt{OPEXFED}\cdot\mathtt{FEP}\left(t\right)\)
OPEX renewable el Gdollar/y OPEXREG REP OPEXRED CRE \(\mathtt{OPEXREG}\left(t\right)=\mathtt{OPEXRED}\cdot\mathtt{REP}\left(t\right)\)
Renewable electricity capacity GW REC AREC DIREC DRECC DIREC REP 300.0 \(\frac{\mathrm{d}\mathtt{REC}\left(t\right)}{\mathrm{d}t}=-\mathtt{DIREC}\left(t\right)+\mathtt{AREC}\left(t\right)\)
Ratio of Energy cost to Trad Energy cost (1) RECTEC CE TCEN \(\mathtt{RECTEC}\left(t\right)=\frac{\mathtt{CE}\left(t\right)}{\mathtt{TCEN}\left(t\right)}\)
Renewable electricity production TWh/y REP REC RCUT OPEXREG GHMH2 IIASAREP LCEP EP \(\mathtt{REP}\left(t\right)=\mathtt{RCUT}\cdot\mathtt{REC}\left(t\right)\)
Renewable heat production Mtoe/y RHP GHMt BEM IIASAREP EU \(\mathtt{RHP}\left(t\right)=\mathtt{BEM}+\mathtt{GHMt}\left(t\right)\)
Traditional cost of electricity GDollar/y TCEG DEBNE TCE AFMCM TCEN \(\mathtt{\mathtt{TCE}G}\left(t\right)=\frac{1}{1000}\cdot\mathtt{AFMCM}\cdot\mathtt{TCE}\cdot\mathtt{DEBNE}\left(t\right)\)
Traditional Cost of ENergy Gdollar/y TCEN TCEG TCFFFNEUG TGC TCENSGDP RECTEC ECETSGDP \(\mathtt{TCEN}\left(t\right)=\mathtt{TCEG}\left(t\right)+\mathtt{TCFFFNEUG}\left(t\right)+\mathtt{TGC}\left(t\right)\)
Traditional cost of energy as share of GDP (1) TCENSGDP GDP TCEN \(\mathtt{TCENSGDP}\left(t\right)=\frac{\mathtt{TCEN}\left(t\right)}{\mathtt{GDP}\left(t\right)}\)
Traditional cost of fossil fuel for non-el use Gdollar/y TCFFFNEUG DFFNEUBNE TCFFFNEU AFMCM TCEN \(\mathtt{\mathtt{TCFFFNEU}G}\left(t\right)=\frac{1}{1000}\cdot\mathtt{AFMCM}\cdot\mathtt{TCFFFNEU}\cdot\mathtt{DFFNEUBNE}\left(t\right)\)
tCO2 per toe TCO2PT ROCTCO2PT CO2EP \(\mathtt{TCO2PT}\left(t\right)=2.8\cdot e^{\mathtt{ROCTCO2PT}\cdot\left(-2000+t\right)}\)
Traditional grid cost GDollar/y TGC DEBNE TC TCEN \(\mathtt{TGC}\left(t\right)=\mathtt{TC}\cdot\mathtt{DEBNE}\left(t\right)\)
Traditional per person use of electricity before EE MWh/p/y TPPUEBEE GDPP DEBNE \(\mathtt{withlookup}(\mathtt{GDPP}(t), [(0.0, 0.0), (10.0, 4.0), (20.0, 7.0), (30.0, 9.0), (50.0, 12.0), (65.0, 13.0)])\)
Traditional per person use of fossil fuels for non-el-use before EE toe/p/y TPPUFFNEUBEE GDPP DFFNEUBNE \(\mathtt{withlookup}(\mathtt{GDPP}(t), [(0.0, 0.3), (15.0, 2.0), (25.0, 3.1), (35.0, 4.0), (50.0, 5.0)])\)
TWh-el per EJ - engineering equivalent TWEPEJEE EFPP TWHPEJCE IIASAREP FTWEPMt \(\mathtt{TWEPEJEE}\left(t\right)=\mathtt{EFPP}\cdot\mathtt{TWHPEJCE}\)
Use of fossil fuels Mtoe/y UFF DFFFNEU FFE CO2EP IIASAFEP \(\mathtt{UFF}\left(t\right)=\mathtt{DFFFNEU}\left(t\right)+\mathtt{FFE}\left(t\right)\)

The parameters

Vensim name Name Is used by Value
Adjustment factor to make cost match 1980 - 2022 AFMCM TCEG TCFFFNEUG 1.35
Biomass energy Mtoe/y BEM RHP 0.0
CAPEX fossil el Dollar/W CAPEXFED CAPEXFEG 0.7
CAPEX of renewable el in 1980 Dollar/W CAPEXRE1980 CAPEXRED 7.0
Cost of CCS Dollar/tCO2 CCCSt CCCSG 95.0
Cost of Nuclear El Dollar/kWh CNED CNEL 0.033
Cost reduction per dubling of sun and wind capacity CRDSWC CISWC 0.2
Extra cost per reduced use og non-el FF Dollar/toe ECRUNEFF CNE 10.0
Efficiency of fossil power plant TWh-el/TWh-heat EFPP TWEPEJEE 0.345
8 khours per year EKHPY DFEC FCUTLOFC 8.0
Extra ROC in energy productivity after 2022 1/y EROCEPA2022 IEEPI 0.002
Extra use of electricity per reduced use of non-el FF MWh/toe EUEPRUNEFF EIDEFNE 3.0
Fraction of CO2-sources with CCS in 2022 FCO2SCCS2022 FCO2SCCS 0.0
Fossil el cap construction time y FECCT DFECC 3.0
Fraction new electrification in 1980 FNE1980 FNE 0.0
Fraction new electrification in 2022 FNE2022 FNE 0.03
Fraction of renewable electricity to hydrogen FREH GHMH2 0.0
Goal for fraction of CO2-sources with CCS GFCO2SCCS FCO2SCCS 0.2
Goal for fraction new electrification GFNE FNE 0.5
Goal for renewable el fraction GREF DRES 0.5
kWh electricity per kg of hydrogen KWEPKGH2 GHMH2 40.0
Life of renewable el capacity y LREC DIREC 40.0
Max non-fossil CO2 per person tCO2/p/y MNFCO2PP NFCO2PP 0.5
Mtoe per EJ - calorific equivalent MTPEJCE IIASAREP FTWEPMt IIASAFEP 24.0
Nuclear capacity up-time kh/y NCUT NEP 8.0
Normal increase in energy efficiency 1/y NIEE DEBNE DFFNEUBNE 0.01
Normal life of fossil el capacity y NLFEC LFEC 40.0
OPEX fossil el Dollar/kWh OPEXFED OPEXFEG 0.02
OPEX renewable el Dollar/kWh OPEXRED OPEXREG 0.001
Renewable capacity up-time kh/y RCUT DREC REP 3.0
Renewable el contruction time y RECT AREC 3.0
Renewable el fraction in 1980 REFF1980 DRES 0.065
Renewable el fraction in 2022 REFF2022 DRES 0.23
ROC in tCO2 per toe 1/y ROCTCO2PT TCO2PT -0.003
Sun and wind capacity in 1980 GW SWC1980 NDSWC 10.0
Transmission cost Dollar/kWh TC CG TGC 0.02
Traditional cost of electricity Dollar/kWh TCE TCEG 0.03
Traditional cost of fossil fuels for non-el use Dollar/toe TCFFFNEU TCFFFNEUG CFFFNEU 240.0
toe per tH2 TPTH2 GHMt 10.0
TWh-heat per EJ - calorific equivalent TWHPEJCE TWEPEJEE 278.0
sFCUTeoLOFC>0 sFCUTLOFC FCUTLOFC 0.5