ACcumulated Sun and Wind Capacity from 1980 GW |
ACSWCF |
ASWC |
|
NDSWC |
10.0 |
\(\frac{\mathrm{d}\mathtt{ACSWCF}\left(t\right)}{\mathrm{d}t}=\mathtt{ASWC}\left(t\right)\) |
Addition of fossil el capacity GW/y |
AFEC |
DFECC |
|
FEC CAPEXFEG |
|
\(\mathtt{AFEC}\left(t\right)=\mathtt{max}\left(0,\mathtt{DFECC}\left(t\right)\right)\) |
Addition of renewable el capacity GW/y |
AREC |
DRECC DIREC |
RECT |
REC ASWC CAPEXREG |
|
\(\mathtt{AREC}\left(t\right)=\mathtt{max}\left(0,\frac{\mathtt{DRECC}\left(t\right)}{\mathtt{RECT}}+\mathtt{DIREC}\left(t\right)\right)\) |
Addition of sun and wind capacity GW/y |
ASWC |
AREC |
|
ACSWCF |
|
\(\mathtt{ASWC}\left(t\right)=\mathtt{AREC}\left(t\right)\) |
CAPEX fossil el GDollar/y |
CAPEXFEG |
AFEC |
CAPEXFED |
CFE |
|
\(\mathtt{CAPEXFEG}\left(t\right)=\mathtt{CAPEXFED}\cdot\mathtt{AFEC}\left(t\right)\) |
CAPEX renewable el dollar/W |
CAPEXRED |
CISWC |
CAPEXRE1980 |
CAPEXREG |
|
\(\mathtt{CAPEXRED}\left(t\right)=\mathtt{CAPEXRE1980}\cdot\mathtt{CISWC}\left(t\right)\) |
CAPEX renewable el Gdollar/y |
CAPEXREG |
CAPEXRED AREC |
|
CRE |
|
\(\mathtt{CAPEXREG}\left(t\right)=\mathtt{AREC}\left(t\right)\cdot\mathtt{CAPEXRED}\left(t\right)\) |
Cost of CCS GDollar/y |
CCCSG |
ICCSC |
CCCSt |
CE |
|
\(\mathtt{CCCSG}\left(t\right)=\mathtt{CCCSt}\cdot\mathtt{ICCSC}\left(t\right)\) |
Cost of energy GDollar/y |
CE |
CG CFFFNEU CAC CCCSG CEL CNE |
|
RECTEC CESGDP ECETSGDP CFETA |
|
\(\mathtt{CE}\left(t\right)=\mathtt{CAC}\left(t\right)+\mathtt{CCCSG}\left(t\right)+\mathtt{CEL}\left(t\right)+\mathtt{CFFFNEU}\left(t\right)+\mathtt{CG}\left(t\right)+\mathtt{CNE}\left(t\right)\) |
Cost of electricity GDollar/y |
CEL |
CRE CFE CNEL |
|
CE |
|
\(\mathtt{CEL}\left(t\right)=\mathtt{CFE}\left(t\right)+\mathtt{CNEL}\left(t\right)+\mathtt{CRE}\left(t\right)\) |
Cost of energy as share of GDP (1) |
CESGDP |
CE GDP |
|
|
|
\(\mathtt{CESGDP}\left(t\right)=\frac{\mathtt{CE}\left(t\right)}{\mathtt{GDP}\left(t\right)}\) |
Cost of fossil electricity GDollar/y |
CFE |
OPEXFEG CAPEXFEG |
|
CEL |
|
\(\mathtt{CFE}\left(t\right)=\mathtt{CAPEXFEG}\left(t\right)+\mathtt{OPEXFEG}\left(t\right)\) |
Cost of Fossil Fuel For Non-El Use Gdollar/y |
CFFFNEU |
DFFFNEU |
TCFFFNEU |
CE |
|
\(\mathtt{CFFFNEU}\left(t\right)=\frac{1}{1000}\cdot\mathtt{TCFFFNEU}\cdot\mathtt{DFFFNEU}\left(t\right)\) |
Cost of grid GDollar/y |
CG |
EP |
TC |
CE |
|
\(\mathtt{CG}\left(t\right)=\mathtt{TC}\cdot\mathtt{EP}\left(t\right)\) |
Cost index for sun and wind capacity (1) |
CISWC |
NDSWC |
CRDSWC |
CAPEXRED |
|
\(\mathtt{CISWC}\left(t\right)=\left(1-\mathtt{CRDSWC}\right)^{\mathtt{NDSWC}\left(t\right)}\) |
Cost of new electrification GDollar/y |
CNE |
ERDNEFFFNE |
ECRUNEFF |
CE |
|
\(\mathtt{CNE}\left(t\right)=\frac{1}{1000}\cdot\mathtt{ECRUNEFF}\cdot\mathtt{ERDNEFFFNE}\left(t\right)\) |
Cost of Nuclear ELectricity Gdollar/y |
CNEL |
NEP |
CNED |
CEL |
|
\(\mathtt{CNEL}\left(t\right)=\mathtt{CNED}\cdot\mathtt{NEP}\left(t\right)\) |
CO2 from energy and industry GtCO2/y |
CO2EI |
CO2EP CO2NFIP |
|
CO2E CO2EMPP |
|
\(\mathtt{CO2EI}\left(t\right)=\mathtt{CO2EP}\left(t\right)+\mathtt{CO2NFIP}\left(t\right)\) |
CO2 EMissions per person tCO2/y |
CO2EMPP |
POP CO2EI |
|
|
|
\(\mathtt{CO2EMPP}\left(t\right)=\frac{1000\cdot\mathtt{CO2EI}\left(t\right)}{\mathtt{POP}\left(t\right)}\) |
CO2 from energy production GtCO2/y |
CO2EP |
UFF TCO2PT FCO2SCCS |
|
CO2EI ICCSC |
|
\(\mathtt{CO2EP}\left(t\right)=\frac{1}{1000}\cdot\left(1-\mathtt{FCO2SCCS}\left(t\right)\right)\cdot\mathtt{TCO2PT}\left(t\right)\cdot\mathtt{UFF}\left(t\right)\) |
CO2 from non-fossil industrial processes GtCO2/y |
CO2NFIP |
POP NFCO2PP FCO2SCCS |
|
CO2EI ICCSC |
|
\(\mathtt{CO2NFIP}\left(t\right)=\frac{1}{1000}\cdot\left(1-\mathtt{FCO2SCCS}\left(t\right)\right)\cdot\mathtt{NFCO2PP}\left(t\right)\cdot\mathtt{POP}\left(t\right)\) |
Cost of renewable electricity GDollar/y |
CRE |
CAPEXREG OPEXREG |
|
CEL |
|
\(\mathtt{CRE}\left(t\right)=\mathtt{CAPEXREG}\left(t\right)+\mathtt{OPEXREG}\left(t\right)\) |
Demand for electricity TWh/y |
DE |
DEBNE EIDEFNE |
|
DSRE DFE ELB |
|
\(\mathtt{DE}\left(t\right)=\mathtt{DEBNE}\left(t\right)+\mathtt{EIDEFNE}\left(t\right)\) |
Demand for electricity before NE TWh/y |
DEBNE |
POP TPPUEBEE EEPI2022 |
NIEE |
DE TCEG TGC |
|
\(\mathtt{DEBNE}\left(t\right)=\frac{\mathtt{POP}\left(t\right)\cdot\mathtt{TPPUEBEE}\left(t\right)\cdot e^{-\mathtt{NIEE}\cdot\left(-2000+t\right)}}{\mathtt{EEPI2022}\left(t\right)}\) |
Demand for fossil electricity TWh/y |
DFE |
LCEP DE |
|
DFEC FCUT |
|
\(\mathtt{DFE}\left(t\right)=\mathtt{max}\left(0,-\mathtt{LCEP}\left(t\right)+\mathtt{DE}\left(t\right)\right)\) |
Desired fossil el capacity GW |
DFEC |
DFE |
EKHPY |
DFECC |
|
\(\mathtt{DFEC}\left(t\right)=\frac{\mathtt{DFE}\left(t\right)}{\mathtt{EKHPY}}\) |
Desired fossil el capacity change GW/y |
DFECC |
DIFEC FEC DFEC |
FECCT |
AFEC |
|
\(\mathtt{DFECC}\left(t\right)=\frac{-\mathtt{FEC}\left(t\right)+\mathtt{DFEC}\left(t\right)}{\mathtt{FECCT}}+\mathtt{DIFEC}\left(t\right)\) |
Demand for fossil fuel for non-el use Mtoe/y |
DFFFNEU |
ERDNEFFFNE DFFNEUBNE |
|
UFF EU CFFFNEU |
|
\(\mathtt{DFFFNEU}\left(t\right)=-\mathtt{ERDNEFFFNE}\left(t\right)+\mathtt{DFFNEUBNE}\left(t\right)\) |
Demand for fossil fuel for non-el use before NE Mtoe/y |
DFFNEUBNE |
POP TPPUFFNEUBEE EEPI2022 |
NIEE |
ERDNEFFFNE DFFFNEU TCFFFNEUG |
|
\(\mathtt{DFFNEUBNE}\left(t\right)=\frac{\mathtt{POP}\left(t\right)\cdot\mathtt{TPPUFFNEUBEE}\left(t\right)\cdot e^{-\mathtt{NIEE}\cdot\left(-2000+t\right)}}{\mathtt{EEPI2022}\left(t\right)}\) |
DIscard of Fossil El Capacity GW/y |
DIFEC |
LFEC FEC |
|
FEC DFECC |
|
\(\mathtt{DIFEC}\left(t\right)=\frac{\mathtt{FEC}\left(t\right)}{\mathtt{LFEC}\left(t\right)}\) |
Discard of renewable el capacity GW/y |
DIREC |
REC |
LREC |
REC AREC |
|
\(\mathtt{DIREC}\left(t\right)=\frac{\mathtt{REC}\left(t\right)}{\mathtt{LREC}}\) |
Desired renewable el capacity GW |
DREC |
DSRE |
RCUT |
DRECC |
|
\(\mathtt{DREC}\left(t\right)=\frac{\mathtt{DSRE}\left(t\right)}{\mathtt{RCUT}}\) |
Desired renewable el capacity change GW |
DRECC |
DREC REC |
|
AREC |
|
\(\mathtt{DRECC}\left(t\right)=-\mathtt{REC}\left(t\right)+\mathtt{DREC}\left(t\right)\) |
Desired renewable electricity share (1) |
DRES |
IPP |
REFF1980 GREF REFF2022 |
DSRE |
|
\(\mathtt{DRES}\left(t\right)=\mathtt{REFF1980}+\mathtt{ramp}\left(t,\frac{\mathtt{GREF}-\mathtt{REFF2022}}{\mathtt{IPP}\left(t\right)},2000,2000+\mathtt{IPP}\left(t\right)\right)+\mathtt{ramp}\left(t,\frac{1}{42}\cdot\left(\mathtt{REFF2022}-\mathtt{REFF1980}\right),2000,2000\right)\) |
Desired supply of renewable electricity TWh/y |
DSRE |
DRES DE |
|
DREC |
|
\(\mathtt{DSRE}\left(t\right)=\mathtt{DE}\left(t\right)\cdot\mathtt{DRES}\left(t\right)\) |
Extra cost of Energy Turnaround as share of GDP (1) |
ECETSGDP |
CE GDP TCEN |
|
|
|
\(\mathtt{ECETSGDP}\left(t\right)=\mathtt{ifelse}\left(\left(t>2000\right),\frac{-\mathtt{TCEN}\left(t\right)+\mathtt{CE}\left(t\right)}{\mathtt{GDP}\left(t\right)},0\right)\) |
Extra energy productivity index 2022=1 |
EEPI2022 |
IEEPI |
|
DEBNE DFFNEUBNE |
1.0 |
\(\frac{\mathrm{d}\mathtt{EEPI2022}\left(t\right)}{\mathrm{d}t}=\mathtt{IEEPI}\left(t\right)\) |
Extra increase in demand for electricity from NE TWh/y |
EIDEFNE |
ERDNEFFFNE |
EUEPRUNEFF |
DE |
|
\(\mathtt{EIDEFNE}\left(t\right)=\mathtt{EUEPRUNEFF}\cdot\mathtt{ERDNEFFFNE}\left(t\right)\) |
ELectricity balance (1) |
ELB |
EP DE |
|
|
|
\(\mathtt{ELB}\left(t\right)=\frac{\mathtt{EP}\left(t\right)}{\mathtt{DE}\left(t\right)}\) |
Electricity production TWh/y |
EP |
NEP REP FEP |
|
ELB FFPNE EU CG |
|
\(\mathtt{EP}\left(t\right)=\mathtt{FEP}\left(t\right)+\mathtt{NEP}\left(t\right)+\mathtt{REP}\left(t\right)\) |
Extra reduction in demand for non-el fossil fuel from NE Mtoe/y |
ERDNEFFFNE |
FNE DFFNEUBNE |
|
CNE EIDEFNE DFFFNEU |
|
\(\mathtt{ERDNEFFFNE}\left(t\right)=\mathtt{DFFNEUBNE}\left(t\right)\cdot\mathtt{FNE}\left(t\right)\) |
Energy use Mtoe/y |
EU |
EP RHP FTWEPMt DFFFNEU |
|
EUPP |
|
\(\mathtt{EU}\left(t\right)=\frac{\mathtt{EP}\left(t\right)}{\mathtt{FTWEPMt}\left(t\right)}+\mathtt{DFFFNEU}\left(t\right)+\mathtt{RHP}\left(t\right)\) |
Energy use per person toe/p/y |
EUPP |
POP EU |
|
|
|
\(\mathtt{EUPP}\left(t\right)=\frac{\mathtt{EU}\left(t\right)}{\mathtt{POP}\left(t\right)}\) |
Fraction of CO2-sources with CCS (1) |
FCO2SCCS |
IPP |
GFCO2SCCS FCO2SCCS2022 |
CO2NFIP CO2EP ICCSC |
|
\(\mathtt{FCO2SCCS}\left(t\right)=\mathtt{FCO2SCCS2022}+\mathtt{ramp}\left(t,\frac{\mathtt{GFCO2SCCS}-\mathtt{FCO2SCCS2022}}{\mathtt{IPP}\left(t\right)},2000,2000+\mathtt{IPP}\left(t\right)\right)\) |
Fossil capacity up-time kh/y |
FCUT |
FEC DFE |
|
FCUTLOFC FEP |
|
\(\mathtt{FCUT}\left(t\right)=\frac{\mathtt{DFE}\left(t\right)}{\mathtt{FEC}\left(t\right)}\) |
FCUTeoLOFC (1) |
FCUTLOFC |
FCUT |
sFCUTLOFC EKHPY |
LFEC |
|
\(\mathtt{FCUTLOFC}\left(t\right)=1+\mathtt{sFCUTLOFC}\cdot\left(-1+\frac{\mathtt{FCUT}\left(t\right)}{\mathtt{EKHPY}}\right)\) |
Fossil electricity capacity GW |
FEC |
AFEC DIFEC |
|
DFECC DIFEC FCUT FEP |
980.0 |
\(\frac{\mathrm{d}\mathtt{FEC}\left(t\right)}{\mathrm{d}t}=-\mathtt{DIFEC}\left(t\right)+\mathtt{AFEC}\left(t\right)\) |
Fossil Electricity Production TWh/y |
FEP |
FCUT FEC |
|
OPEXFEG EP FFPNE FFE |
|
\(\mathtt{FEP}\left(t\right)=\mathtt{FCUT}\left(t\right)\cdot\mathtt{FEC}\left(t\right)\) |
Fossil fuels for electricity Mtoe/y |
FFE |
FEP FTWEPMt |
|
UFF |
|
\(\mathtt{FFE}\left(t\right)=\frac{\mathtt{FEP}\left(t\right)}{\mathtt{FTWEPMt}\left(t\right)}\) |
Fraction fossil plus nuclear electricity (1) |
FFPNE |
NEP FEP EP |
|
|
|
\(\mathtt{FFPNE}\left(t\right)=\frac{\mathtt{FEP}\left(t\right)+\mathtt{NEP}\left(t\right)}{\mathtt{EP}\left(t\right)}\) |
Fraction new electrification (1) |
FNE |
IPP |
GFNE FNE2022 FNE1980 |
ERDNEFFFNE |
|
\(\mathtt{FNE}\left(t\right)=\mathtt{FNE1980}+\mathtt{ramp}\left(t,\frac{1}{42}\cdot\left(\mathtt{FNE2022}-\mathtt{FNE1980}\right),2000,2000\right)+\mathtt{ramp}\left(t,\frac{\mathtt{GFNE}-\mathtt{FNE2022}}{\mathtt{IPP}\left(t\right)},2000,2000+\mathtt{IPP}\left(t\right)\right)\) |
4 TWh-el per Mtoe |
FTWEPMt |
TWEPEJEE |
MTPEJCE |
EU FFE |
|
\(\mathtt{FTWEPMt}\left(t\right)=\frac{\mathtt{TWEPEJEE}\left(t\right)}{\mathtt{MTPEJCE}}\) |
Green hydrogen MtH2/y |
GHMH2 |
REP |
FREH KWEPKGH2 |
GHMt |
|
\(\mathtt{GHMH2}\left(t\right)=\frac{\mathtt{FREH}\cdot\mathtt{REP}\left(t\right)}{\mathtt{KWEPKGH2}}\) |
Green hydrogen Mtoe/y |
GHMt |
GHMH2 |
TPTH2 |
RHP |
|
\(\mathtt{GHMt}\left(t\right)=\mathtt{TPTH2}\cdot\mathtt{GHMH2}\left(t\right)\) |
Installed CCS capacity GtCO2/y |
ICCSC |
CO2EP CO2NFIP FCO2SCCS |
|
CCCSG |
|
\(\mathtt{ICCSC}\left(t\right)=\frac{\left(\mathtt{CO2EP}\left(t\right)+\mathtt{CO2NFIP}\left(t\right)\right)\cdot\mathtt{FCO2SCCS}\left(t\right)}{1-\mathtt{FCO2SCCS}\left(t\right)}\) |
Increase in extra energy productivity index 1/y |
IEEPI |
|
EROCEPA2022 |
EEPI2022 |
|
\(\mathtt{IEEPI}\left(t\right)=\mathtt{ifelse}\left(\left(t\geq2000\right),\mathtt{EROCEPA2022},0\right)\) |
IIASA Fossil energy production EJ/yr |
IIASAFEP |
UFF |
MTPEJCE |
|
|
\(\mathtt{IIASAFEP}\left(t\right)=\frac{\mathtt{UFF}\left(t\right)}{\mathtt{MTPEJCE}}\) |
IIASA Renewable energy production EJ/yr |
IIASAREP |
REP RHP TWEPEJEE |
MTPEJCE |
|
|
\(\mathtt{IIASAREP}\left(t\right)=\frac{\mathtt{REP}\left(t\right)}{\mathtt{TWEPEJEE}\left(t\right)}+\frac{\mathtt{RHP}\left(t\right)}{\mathtt{MTPEJCE}}\) |
Low-carbon el production TWh/y |
LCEP |
NEP REP |
|
DFE |
|
\(\mathtt{LCEP}\left(t\right)=\mathtt{NEP}\left(t\right)+\mathtt{REP}\left(t\right)\) |
Life of fossil el capacity y |
LFEC |
FCUTLOFC |
NLFEC |
DIFEC |
|
\(\mathtt{LFEC}\left(t\right)=\mathtt{NLFEC}\cdot\mathtt{FCUTLOFC}\left(t\right)\) |
Nuclear capacity GW |
NC |
|
|
NEP |
|
\(\mathtt{withlookup}(t, [(1980.0, 75.0), (2000.0, 310.0), (2020.0, 310.0), (2098.9, 310.0)])\) |
Number of doublings in sun and wind capacity (1) |
NDSWC |
ACSWCF |
SWC1980 |
CISWC |
|
\(\mathtt{NDSWC}\left(t\right)=0.69+\log\left(\frac{\mathtt{ACSWCF}\left(t\right)}{\mathtt{SWC1980}}\right)\) |
Nuclear electricity production TWh/y |
NEP |
NC |
NCUT |
CNEL LCEP EP FFPNE |
|
\(\mathtt{NEP}\left(t\right)=\mathtt{NCUT}\cdot\mathtt{NC}\left(t\right)\) |
Non-fossil CO2 per person tCO2/p/y |
NFCO2PP |
GDPP |
MNFCO2PP |
CO2NFIP |
|
\(\mathtt{NFCO2PP}\left(t\right)=\mathtt{MNFCO2PP}\cdot\left(1-e^{-\frac{1}{10}\cdot\mathtt{GDPP}\left(t\right)}\right)\) |
OPEX fossil el GDollar/y |
OPEXFEG |
FEP |
OPEXFED |
CFE |
|
\(\mathtt{OPEXFEG}\left(t\right)=\mathtt{OPEXFED}\cdot\mathtt{FEP}\left(t\right)\) |
OPEX renewable el Gdollar/y |
OPEXREG |
REP |
OPEXRED |
CRE |
|
\(\mathtt{OPEXREG}\left(t\right)=\mathtt{OPEXRED}\cdot\mathtt{REP}\left(t\right)\) |
Renewable electricity capacity GW |
REC |
AREC DIREC |
|
DRECC DIREC REP |
300.0 |
\(\frac{\mathrm{d}\mathtt{REC}\left(t\right)}{\mathrm{d}t}=-\mathtt{DIREC}\left(t\right)+\mathtt{AREC}\left(t\right)\) |
Ratio of Energy cost to Trad Energy cost (1) |
RECTEC |
CE TCEN |
|
|
|
\(\mathtt{RECTEC}\left(t\right)=\frac{\mathtt{CE}\left(t\right)}{\mathtt{TCEN}\left(t\right)}\) |
Renewable electricity production TWh/y |
REP |
REC |
RCUT |
OPEXREG GHMH2 IIASAREP LCEP EP |
|
\(\mathtt{REP}\left(t\right)=\mathtt{RCUT}\cdot\mathtt{REC}\left(t\right)\) |
Renewable heat production Mtoe/y |
RHP |
GHMt |
BEM |
IIASAREP EU |
|
\(\mathtt{RHP}\left(t\right)=\mathtt{BEM}+\mathtt{GHMt}\left(t\right)\) |
Traditional cost of electricity GDollar/y |
TCEG |
DEBNE |
TCE AFMCM |
TCEN |
|
\(\mathtt{\mathtt{TCE}G}\left(t\right)=\frac{1}{1000}\cdot\mathtt{AFMCM}\cdot\mathtt{TCE}\cdot\mathtt{DEBNE}\left(t\right)\) |
Traditional Cost of ENergy Gdollar/y |
TCEN |
TCEG TCFFFNEUG TGC |
|
TCENSGDP RECTEC ECETSGDP |
|
\(\mathtt{TCEN}\left(t\right)=\mathtt{TCEG}\left(t\right)+\mathtt{TCFFFNEUG}\left(t\right)+\mathtt{TGC}\left(t\right)\) |
Traditional cost of energy as share of GDP (1) |
TCENSGDP |
GDP TCEN |
|
|
|
\(\mathtt{TCENSGDP}\left(t\right)=\frac{\mathtt{TCEN}\left(t\right)}{\mathtt{GDP}\left(t\right)}\) |
Traditional cost of fossil fuel for non-el use Gdollar/y |
TCFFFNEUG |
DFFNEUBNE |
TCFFFNEU AFMCM |
TCEN |
|
\(\mathtt{\mathtt{TCFFFNEU}G}\left(t\right)=\frac{1}{1000}\cdot\mathtt{AFMCM}\cdot\mathtt{TCFFFNEU}\cdot\mathtt{DFFNEUBNE}\left(t\right)\) |
tCO2 per toe |
TCO2PT |
|
ROCTCO2PT |
CO2EP |
|
\(\mathtt{TCO2PT}\left(t\right)=2.8\cdot e^{\mathtt{ROCTCO2PT}\cdot\left(-2000+t\right)}\) |
Traditional grid cost GDollar/y |
TGC |
DEBNE |
TC |
TCEN |
|
\(\mathtt{TGC}\left(t\right)=\mathtt{TC}\cdot\mathtt{DEBNE}\left(t\right)\) |
Traditional per person use of electricity before EE MWh/p/y |
TPPUEBEE |
GDPP |
|
DEBNE |
|
\(\mathtt{withlookup}(\mathtt{GDPP}(t), [(0.0, 0.0), (10.0, 4.0), (20.0, 7.0), (30.0, 9.0), (50.0, 12.0), (65.0, 13.0)])\) |
Traditional per person use of fossil fuels for non-el-use before EE toe/p/y |
TPPUFFNEUBEE |
GDPP |
|
DFFNEUBNE |
|
\(\mathtt{withlookup}(\mathtt{GDPP}(t), [(0.0, 0.3), (15.0, 2.0), (25.0, 3.1), (35.0, 4.0), (50.0, 5.0)])\) |
TWh-el per EJ - engineering equivalent |
TWEPEJEE |
|
EFPP TWHPEJCE |
IIASAREP FTWEPMt |
|
\(\mathtt{TWEPEJEE}\left(t\right)=\mathtt{EFPP}\cdot\mathtt{TWHPEJCE}\) |
Use of fossil fuels Mtoe/y |
UFF |
DFFFNEU FFE |
|
CO2EP IIASAFEP |
|
\(\mathtt{UFF}\left(t\right)=\mathtt{DFFFNEU}\left(t\right)+\mathtt{FFE}\left(t\right)\) |