The CLIMATE sector

The variables

Vensim name Name Used variables Used parameters Variables using it Initial value Equation
ALbedo (1) AL ISCEGA ALIS ALGAV GLSU TRHGS 0.3094 \(\mathtt{AL}\left(t\right)=\frac{\mathtt{ALGAV}\cdot\left(\mathtt{GLSU}-\mathtt{ISCEGA}\left(t\right)\right)+\mathtt{ALIS}\cdot\mathtt{ISCEGA}\left(t\right)}{\mathtt{GLSU}}\)
Cost of air capture GDollar/y CAC DACCO2 CCCSt CE \(\mathtt{CAC}\left(t\right)=\mathtt{CCCSt}\cdot\mathtt{DACCO2}\left(t\right)\)
CH4 in Atmosphere GtCH4 CH4A CH4BD CH4E CH4BD CH4CA 2.5 \(\frac{\mathrm{d}\mathtt{CH4A}\left(t\right)}{\mathrm{d}t}=-\mathtt{CH4BD}\left(t\right)+\mathtt{CH4E}\left(t\right)\)
CH4 BreakDown GtCH4/y CH4BD CH4A LCH4A CH4A CO2FCH4 \(\mathtt{CH4BD}\left(t\right)=\frac{\mathtt{CH4A}\left(t\right)}{\mathtt{LCH4A}}\)
CH4 concentration in atm ppm CH4CA CH4A GCH4PP FCH4 \(\mathtt{CH4CA}\left(t\right)=\frac{\mathtt{CH4A}\left(t\right)}{\mathtt{GCH4PP}}\)
CH4 emissions GtCH4/y CH4E MMCH4E NCH4E CH4A GHGE \(\mathtt{CH4E}\left(t\right)=\mathtt{MMCH4E}\left(t\right)+\mathtt{NCH4E}\left(t\right)\)
CH4 forcing per ppm W/m2/ppm CH4FPP FCH4 \(\mathtt{withlookup}(t, [(1980.0, 0.82), (2000.0, 0.94), (2020.0, 1.01), (2100.0, 1.1)])\)
CO2 in Atmosphere GtCO2 CO2A CO2FCH4 CO2AB CO2E CO2AB CO2CA 2600.0 \(\frac{\mathrm{d}\mathtt{CO2A}\left(t\right)}{\mathrm{d}t}=-\mathtt{CO2AB}\left(t\right)+2\cdot\mathtt{CO2FCH4}\left(t\right)+\mathtt{CO2E}\left(t\right)\)
CO2 absorption GtCO2/y CO2AB LECO2A CO2A CO2A1850 CO2A \(\mathtt{CO2AB}\left(t\right)=\frac{-\mathtt{CO2A1850}+\mathtt{CO2A}\left(t\right)}{\mathtt{LECO2A}\left(t\right)}\)
CO2 concentration in atm ppm CO2CA CO2A GCO2PP FCO2 CO2ELY \(\mathtt{CO2CA}\left(t\right)=\frac{\mathtt{CO2A}\left(t\right)}{\mathtt{GCO2PP}}\)
CO2 emissions GtCO2/y CO2E CO2ELULUC DACCO2 CO2EI CO2A CO2GDP GHGE \(\mathtt{CO2E}\left(t\right)=-\mathtt{DACCO2}\left(t\right)+\mathtt{CO2EI}\left(t\right)+\mathtt{CO2ELULUC}\left(t\right)\)
CO2 from CH4 GtCO2/y CO2FCH4 CH4BD TCO2PTCH4 CO2A \(\mathtt{CO2FCH4}\left(t\right)=\mathtt{TCO2PTCH4}\cdot\mathtt{CH4BD}\left(t\right)\)
CO2 forcing per ppm W/m2/ppm CO2FPP FCO2 \(\mathtt{withlookup}(t, [(1980.0, 0.0032), (1990.0, 0.0041), (2000.0, 0.0046), (2020.0, 0.0051), (2100.0, 0.006)])\)
CO2 per GDP (kgCO2/Dollar) CO2GDP GDP CO2E \(\mathtt{CO2GDP}\left(t\right)=\frac{1000\cdot\mathtt{CO2E}\left(t\right)}{\mathtt{GDP}\left(t\right)}\)
Direct Air Capture of CO2 GtCO2/y DACCO2 IPP DACCO22100 CO2E CAC \(\mathtt{DACCO2}\left(t\right)=\mathtt{ifelse}\left(\left(t>2000\right),\mathtt{ramp}\left(t,\frac{\mathtt{DACCO22100}}{\mathtt{IPP}\left(t\right)},2000,2000+\mathtt{IPP}\left(t\right)\right),0\right)\)
Extra cooling from ice melt ZJ/y ECIM MRDI HRMI AI1980 TPM3I EHS \(\mathtt{ECIM}\left(t\right)=\mathtt{AI1980}\cdot\mathtt{HRMI}\cdot\mathtt{TPM3I}\cdot\mathtt{MRDI}\left(t\right)\)
Extra heat in surface ZJ EHS HDO ECIM EWFF HTS HTS OW HDO 0.0 \(\frac{\mathrm{d}\mathtt{EHS}\left(t\right)}{\mathrm{d}t}=-\mathtt{ECIM}\left(t\right)-\mathtt{HDO}\left(t\right)-\mathtt{HTS}\left(t\right)+\mathtt{EWFF}\left(t\right)\)
Extra Warming from forcing ZJ/y EWFF TMMF GLSU EHS \(\mathtt{EWFF}\left(t\right)=0.032\cdot\mathtt{GLSU}\cdot\mathtt{TMMF}\left(t\right)\)
Forcing from CH4 W/m2 FCH4 CH4CA CH4FPP MMF \(\mathtt{FCH4}\left(t\right)=\mathtt{CH4CA}\left(t\right)\cdot\mathtt{CH4FPP}\left(t\right)\)
Forcing from CO2 W/m2 FCO2 CO2CA CO2FPP MMF \(\mathtt{FCO2}\left(t\right)=\mathtt{CO2CA}\left(t\right)\cdot\mathtt{CO2FPP}\left(t\right)\)
Forcing from N2O W/m2 FN2O N2OFPP N2OCA MMF \(\mathtt{FN2O}\left(t\right)=\mathtt{N2OCA}\left(t\right)\cdot\mathtt{N2OFPP}\left(t\right)\)
Forcing from other gases W/m2 FOG MMF \(\mathtt{withlookup}(t, [(1980.0, 0.18), (2000.0, 0.36), (2020.0, 0.39), (2050.0, 0.37), (2100.0, 0.0)])\)
GHG emissions GtCO2e/y GHGE N2OE CH4E CO2E TCO2ETN2O TCO2ETCH4 TCO2ETCO2 \(\mathtt{GHGE}\left(t\right)=\mathtt{TCO2ETCH4}\cdot\mathtt{CH4E}\left(t\right)+\mathtt{TCO2ETCO2}\cdot\mathtt{CO2E}\left(t\right)+\mathtt{TCO2ETN2O}\cdot\mathtt{N2OE}\left(t\right)\)
Heat to deep ocean ZJ/y HDO EHS TRHGA EHS \(\mathtt{HDO}\left(t\right)=\mathtt{EHS}\left(t\right)\cdot\mathtt{TRHGA}\left(t\right)\)
Heat to space ZJ/y HTS EHS TRHGS EHS \(\mathtt{HTS}\left(t\right)=\mathtt{EHS}\left(t\right)\cdot\mathtt{TRHGS}\left(t\right)\)
Ice and snow cover Mha ISC ISCEGA \(\mathtt{ISC}\left(t\right)=100\cdot\mathtt{ISCEGA}\left(t\right)\)
Ice and snow cover excl G&A Mkm2 ISCEGA MEL AL MEL ISC 12.0 \(\frac{\mathrm{d}\mathtt{ISCEGA}\left(t\right)}{\mathrm{d}t}=-\mathtt{MEL}\left(t\right)\)
kg CH4 emission per kg crop KCH4EKC ERDCH4KC2022 KCH4KC1980 RDCH4KC MMCH4E \(\mathtt{KCH4EKC}\left(t\right)=\mathtt{KCH4KC1980}\cdot e^{-\mathtt{RDCH4KC}\cdot\left(-2000+t\right)}\cdot\mathtt{ifelse}\left(\left(t>2000\right),e^{-\mathtt{E\mathtt{RDCH4KC}2022}\cdot\left(-2000+t\right)},1\right)\)
kg N2O emission per kg fertiliser KN2OEKF RDN2OKF KN2OKF1980 ERDN2OKF2022 MMN2OE \(\mathtt{KN2OEKF}\left(t\right)=\mathtt{KN2OKF1980}\cdot e^{-\mathtt{RDN2OKF}\cdot\left(-1980+t\right)}\cdot\mathtt{ifelse}\left(\left(t>2022\right),e^{-\mathtt{ERDN2OKF2022}\cdot\left(-2022+t\right)},1\right)\)
Life of extra CO2 in atm y LECO2A OWLCO2 LECO2A1980 CO2AB \(\mathtt{LECO2A}\left(t\right)=\mathtt{LECO2A1980}\cdot\mathtt{OWLCO2}\left(t\right)\)
Melting Mha/y MEL ISCEGA MRS ISCEGA \(\mathtt{MEL}\left(t\right)=\mathtt{ISCEGA}\left(t\right)\cdot\mathtt{MRS}\left(t\right)\)
Man-made CH4 emissions GtCH4/y MMCH4E KCH4EKC CRSU CH4E \(\mathtt{MMCH4E}\left(t\right)=\frac{1}{1000}\cdot\mathtt{CRSU}\left(t\right)\cdot\mathtt{KCH4EKC}\left(t\right)\)
Man-made Forcing W/m2 MMF FN2O FCO2 FCH4 FOG TMMF \(\mathtt{MMF}\left(t\right)=\mathtt{FCH4}\left(t\right)+\mathtt{FCO2}\left(t\right)+\mathtt{FN2O}\left(t\right)+\mathtt{FOG}\left(t\right)\)
Man-made N2O emissions GtN2O/y MMN2OE KN2OEKF FEUS N2OE \(\mathtt{MMN2OE}\left(t\right)=\frac{1}{1000}\cdot\mathtt{FEUS}\left(t\right)\cdot\mathtt{KN2OEKF}\left(t\right)\)
Melting rate deep ice 1/y MRDI MRS SVDR ECIM \(\mathtt{MRDI}\left(t\right)=\frac{\mathtt{MRS}\left(t\right)}{\mathtt{SVDR}}\)
Melting rate surface 1/y MRS OW MRS1980 WA1980 MRDI MEL \(\mathtt{MRS}\left(t\right)=\frac{\mathtt{MRS1980}\cdot\mathtt{OW}\left(t\right)}{\mathtt{WA1980}}\)
N2O in Atmosphere GtN2O N2OA N2OE N2OBD N2OBD N2OCA 1.052 \(\frac{\mathrm{d}\mathtt{N2OA}\left(t\right)}{\mathrm{d}t}=-\mathtt{N2OBD}\left(t\right)+\mathtt{N2OE}\left(t\right)\)
N2O BreakDown GtN2O/y N2OBD N2OA LN2OA N2OA \(\mathtt{N2OBD}\left(t\right)=\frac{\mathtt{N2OA}\left(t\right)}{\mathtt{LN2OA}}\)
N2O concentration in atm ppm N2OCA N2OA GN2OPP FN2O \(\mathtt{N2OCA}\left(t\right)=\frac{\mathtt{N2OA}\left(t\right)}{\mathtt{GN2OPP}}\)
N2O emissions GtN2O/y N2OE NN2OE MMN2OE N2OA GHGE \(\mathtt{N2OE}\left(t\right)=\mathtt{MMN2OE}\left(t\right)+\mathtt{NN2OE}\left(t\right)\)
N2O forcing per ppm W/m2/ppm N2OFPP FN2O \(\mathtt{withlookup}(t, [(1980.0, 0.43), (2000.0, 0.64), (2010.0, 0.73), (2020.0, 0.8), (2100.0, 1.0)])\)
Natural CH4 emissions GtCH4/y NCH4E CH4E \(\mathtt{withlookup}(t, [(1980.0, 0.19), (2020.0, 0.19), (2100.0, 0.19)])\)
Natural N2O emissions GtN2O/y NN2OE N2OE \(\mathtt{withlookup}(t, [(1980.0, 0.009), (2020.0, 0.009), (2099.27, 0.0)])\)
OBserved WArming deg C OW EHS WFEH EH1980 WA1980 PWA OWLCO2 TRHGS MRS WVC REHE TRHGA WELY OWECC OWELC WELE OWTFP \(\mathtt{OW}\left(t\right)=\mathtt{WA1980}+\mathtt{WFEH}\cdot\left(-\mathtt{EH1980}+\mathtt{EHS}\left(t\right)\right)\)
OWeoLoCO2 OWLCO2 OW OBWA2022 SOWLCO2 LECO2A \(\mathtt{OWLCO2}\left(t\right)=\mathtt{ifelse}\left(\left(t>2000\right),1+\mathtt{SOWLCO2}\cdot\left(-1+\frac{\mathtt{OW}\left(t\right)}{\mathtt{OBWA2022}}\right),1\right)\)
Perceived WArming deg C PWA PWA OW PD PWA AWBGW 0.4 \(\frac{\mathrm{d}\mathtt{PWA}\left(t\right)}{\mathrm{d}t}=\frac{-\mathtt{PWA}\left(t\right)+\mathtt{OW}\left(t\right)}{\mathtt{PD}}\)
Risk of extreme heat event (1) REHE OW \(\mathtt{withlookup}(\mathtt{OW}(t), [(0.0, 1.0), (1.2, 4.8), (2.0, 8.6), (2.9, 14.0), (5.2, 40.0)])\)
Total man-made forcing W/m2 TMMF WVF MMF EWFF \(\mathtt{TMMF}\left(t\right)=\mathtt{MMF}\left(t\right)+\mathtt{WVF}\left(t\right)\)
Transfer rate for heat going to abyss 1/y TRHGA OW TRSA1980 HDO \(\mathtt{TRHGA}\left(t\right)=\frac{1}{290}\cdot\mathtt{TRSA1980}\cdot\left(290+\mathtt{OW}\left(t\right)\right)\)
Transfer rate for heat going to space 1/y TRHGS OW AL TRSS1980 HTS \(\mathtt{TRHGS}\left(t\right)=0.011\cdot\mathtt{TRSS1980}\cdot\left(300+\mathtt{OW}\left(t\right)\right)\cdot\mathtt{AL}\left(t\right)\)
Water Vapor Concentration g/kg WVC OW WVC1980 WA1980 OWWV WVF \(\mathtt{WVC}\left(t\right)=\mathtt{WVC1980}\cdot\left(1+\mathtt{OWWV}\cdot\left(-1+\frac{\mathtt{OW}\left(t\right)}{\mathtt{WA1980}}\right)\right)\)
Water Vapour Feedback W/m2 WVF WVC WVC1980 WVF1980 WVWVF TMMF \(\mathtt{WVF}\left(t\right)=\mathtt{WVF1980}\cdot\left(1+\mathtt{WVWVF}\cdot\left(-1+\frac{\mathtt{WVC}\left(t\right)}{\mathtt{WVC1980}}\right)\right)\)

The parameters

Vensim name Name Is used by Value
Amount of ice in 1980 MKm3 AI1980 ECIM 55.0
ALbedo global average ALGAV AL 0.3
ALbedo Ice and snow ALIS AL 0.7
Cost of CCS Dollar/tCO2 CCCSt CAC 95.0
CO2 in atmosphere in 1850 GtCO2 CO2A1850 CO2AB 2200.0
Direct Air Capture of CO2 in 2100 GtCO2/y DACCO22100 DACCO2 0.0
Extra Heat in 1980 ZJ EH1980 OW 0.0
Extra rate of decline in CH4 per kg crop after 2022 1/y ERDCH4KC2022 KCH4EKC 0.0
Extra rate of decline in N2O per kg fertilizer from 2022 ERDN2OKF2022 KN2OEKF 0.0
GtCH4 per ppm GCH4PP CH4CA 5.0
GtCO2 per ppm GCO2PP CO2CA 7.9
GLobal SUrface Mkm2 GLSU AL EWFF 510.0
GtN2O per ppm GN2OPP N2OCA 5.0
Heat required to melt ice kJ/kg HRMI ECIM 333.0
kg CH4 per kg crop in 1980 KCH4KC1980 KCH4EKC 0.05
kg N2O per kg fertilizer in 1980 KN2OKF1980 KN2OEKF 0.11
Life of CH4 in atmosphere y LCH4A CH4BD 7.5
Life of extra CO2 in atmosphere in 1980 y LECO2A1980 LECO2A 60.0
Life of N2O in atmosphere y LN2OA N2OBD 95.0
Melting rate surface in 1980 1/y MRS1980 MRS 0.0015
OBserved WArming in 2022 deg C OBWA2022 OWLCO2 1.35
sOWeoWV>0 OWWV WVC 0.18
Perception delay y PD PWA 5.0
Rate of decline in CH4 per kg crop 1/y RDCH4KC KCH4EKC 0.01
Rate of decline in N2O per kg fertilizer 1/y RDN2OKF KN2OEKF 0.01
sOWeoLoCO2>0 SOWLCO2 OWLCO2 1.0
Surface vs deep rate SVDR MRDI 4.0
tCO2e/tCH4 TCO2ETCH4 GHGE 23.0
tCO2e/tCO2 TCO2ETCO2 GHGE 1.0
tCO2e/tN2O TCO2ETN2O GHGE 7.0
tCO2 per tCH4 TCO2PTCH4 CO2FCH4 2.75
Ton per m3 ice TPM3I ECIM 0.95
Transfer rate surface-abyss in 1980 1/y TRSA1980 TRHGA 0.01
Transfer rate surface-space in 1980 1/y TRSS1980 TRHGS 0.01
Warming in 1980 deg C WA1980 MRS WVC OW 0.4
Warming from Extra Heat deg/ZJ WFEH OW 0.0006
Water Vapour Concentration in 1980 g/kg WVC1980 WVC WVF 2.0
Water Vapour Feedback in 1980 W/m2 WVF1980 WVF 0.9
sWVeoWVF>0 WVWVF WVF 3.0