Aged 0-20 years Mp |
A0020 |
PASS20 BIRTHS |
|
DR POP |
2170.0 |
\(\frac{\mathrm{d}\mathtt{A0020}\left(t\right)}{\mathrm{d}t}=-\mathtt{PASS20}\left(t\right)+\mathtt{BIRTHS}\left(t\right)\) |
Aged 20-40 years Mp |
A2040 |
PASS20 PASS40 |
|
A20PA BIRTHS DR POP |
1100.0 |
\(\frac{\mathrm{d}\mathtt{A2040}\left(t\right)}{\mathrm{d}t}=-\mathtt{PASS40}\left(t\right)+\mathtt{PASS20}\left(t\right)\) |
Aged 20-Pension Age Mp |
A20PA |
OP A2040 A4060 A60PL |
|
WAP PW |
|
\(\mathtt{A20PA}\left(t\right)=-\mathtt{OP}\left(t\right)+\mathtt{A2040}\left(t\right)+\mathtt{A4060}\left(t\right)+\mathtt{A60PL}\left(t\right)\) |
Aged 40-60 Mp |
A4060 |
PASS60 PASS40 |
|
A20PA DR POP |
768.0 |
\(\frac{\mathrm{d}\mathtt{A4060}\left(t\right)}{\mathrm{d}t}=-\mathtt{PASS60}\left(t\right)+\mathtt{PASS40}\left(t\right)\) |
Aged 60 + Mp |
A60PL |
PASS60 DEATHS |
|
A20PA DR OP POP |
382.0 |
\(\frac{\mathrm{d}\mathtt{A60PL}\left(t\right)}{\mathrm{d}t}=-\mathtt{DEATHS}\left(t\right)+\mathtt{PASS60}\left(t\right)\) |
Birth Rate 1/y |
BIRTHR |
POP BIRTHS |
|
PGR |
|
\(\mathtt{BIRTHR}\left(t\right)=\frac{\mathtt{BIRTHS}\left(t\right)}{\mathtt{POP}\left(t\right)}\) |
Births Mp/y |
BIRTHS |
OF A2040 |
FP FW |
A0020 BIRTHR PASS20 |
|
\(\mathtt{BIRTHS}\left(t\right)=\frac{\mathtt{FW}\cdot\mathtt{A2040}\left(t\right)\cdot\mathtt{OF}\left(t\right)}{\mathtt{FP}}\) |
Cost of Extra Fertility Reduction (share of GDP) |
CEFR |
EFR |
CMFR |
|
|
\(\mathtt{CEFR}\left(t\right)=\mathtt{CMFR}\cdot\mathtt{EFR}\left(t\right)\) |
Death Rate 1/y |
DEATHR |
POP DEATHS |
|
PGR |
|
\(\mathtt{DEATHR}\left(t\right)=\frac{\mathtt{DEATHS}\left(t\right)}{\mathtt{POP}\left(t\right)}\) |
Deaths Mp/y |
DEATHS |
PASS60 |
|
A60PL DEATHR |
|
\(\mathtt{DEATHS}\left(t\right)=\mathtt{delayn}\left(\mathtt{PASS60}, \mathtt{LE60}, \mathtt{init}(\mathtt{DEATHS}), \mathtt{ORDER}\right)\) |
Desired No of Children 1 |
DNC |
EGDPP EFR FM |
DNCA DNC80 DNCG DNCM |
OF |
|
\(\mathtt{DNC}\left(t\right)=\left(1-\mathtt{EFR}\left(t\right)\right)\cdot\left(1+\mathtt{DNCA}\cdot\left(-6.4+\mathtt{EGDPP}\left(t\right)\right)\right)\cdot\left(\mathtt{DNCM}+\left(\mathtt{DNC80}-\mathtt{DNCM}\right)\cdot e^{-\mathtt{DNCG}\cdot\left(-6.4+\mathtt{EGDPP}\left(t\right)\right)}\right)\cdot\mathtt{FM}\left(t\right)\) |
Dependency Ratio p/p |
DR |
A0020 A2040 A4060 A60PL |
|
|
|
\(\mathtt{DR}\left(t\right)=\frac{\mathtt{A0020}\left(t\right)+\mathtt{A60PL}\left(t\right)}{\mathtt{A2040}\left(t\right)+\mathtt{A4060}\left(t\right)}\) |
Extra Fertility Reduction (1) |
EFR |
IPP |
GEFR |
CEFR DNC |
|
\(\mathtt{EFR}\left(t\right)=\mathtt{ramp}\left(t,\frac{\mathtt{GEFR}}{\mathtt{IPP}\left(t\right)},2000,2000+\mathtt{IPP}\left(t\right)\right)\) |
Effective GDP per Person kDollar/p/y |
EGDPP |
GDPP EGDPP |
TAHI |
OSF EGDPP DNC LE |
6.4 |
\(\frac{\mathrm{d}\mathtt{EGDPP}\left(t\right)}{\mathrm{d}t}=\frac{-\mathtt{EGDPP}\left(t\right)+\mathtt{GDPP}\left(t\right)}{\mathtt{TAHI}}\) |
Extra Pension Age y |
EPA |
IPP |
GEPA |
PA |
0.0 |
\(\mathtt{EPA}\left(t\right)=\mathtt{ramp}\left(t,\frac{\mathtt{GEPA}}{\mathtt{IPP}\left(t\right)},2000,22000+\mathtt{IPP}\left(t\right)\right)\) |
Fertility Multiplier (1) |
FM |
|
SSP2FA2022F MFM |
DNC |
|
\(\mathtt{FM}\left(t\right)=\mathtt{ifelse}\left(\left(\mathtt{SSP2FA2022F}>0\right),\mathtt{ifelse}\left(\left(t>2000\right),1+\mathtt{ramp}\left(t,\frac{1}{78}\cdot\left(-1+\mathtt{MFM}\right),2000,2100\right),1\right),1\right)\) |
GDP per Person kDollar/p/y |
GDPP |
POP GDP |
|
NFCO2PP TPPUEBEE TPPUFFNEUBEE TUCP TURMP GDPPEROCCLR HWMGDPP PGDPP FB15 RGGDPP FRACAMGDPPL FRACAMGDPPT EGDPP IROTA PSSGDP |
|
\(\mathtt{GDPP}\left(t\right)=\frac{\mathtt{GDP}\left(t\right)}{\mathtt{POP}\left(t\right)}\) |
Life Expectancy y |
LE |
LEM WELE EGDPP |
LEMAX LEA LEG |
LE60 OP PA |
67.0 |
\(\mathtt{LE}\left(t\right)=\left(1+\mathtt{LEA}\cdot\left(-6.4+\mathtt{EGDPP}\left(t\right)\right)\right)\cdot\left(\mathtt{LEMAX}+\left(67-\mathtt{LEMAX}\right)\cdot e^{-\mathtt{LEG}\cdot\left(-6.4+\mathtt{EGDPP}\left(t\right)\right)}\right)\cdot\mathtt{LEM}\left(t\right)\cdot\mathtt{WELE}\left(t\right)\) |
LE at 60 y |
LE60 |
LE |
|
|
|
\(\mathtt{LE60}\left(t\right)=-60+\mathtt{LE}\left(t\right)\) |
Life Expectancy Multipler (1) |
LEM |
|
MLEM SSP2FA2022F |
LE |
|
\(\mathtt{LEM}\left(t\right)=\mathtt{ifelse}\left(\left(\mathtt{SSP2FA2022F}>0\right),\mathtt{ifelse}\left(\left(t>2000\right),1+\mathtt{ramp}\left(t,\frac{1}{78}\cdot\left(-1+\mathtt{MLEM}\right),2000,2100\right),1\right),1\right)\) |
Observed Fertility 1 |
OF |
DNC |
FADFS |
BIRTHS |
|
\(\mathtt{OF}\left(t\right)=\mathtt{FADFS}\cdot\mathtt{DNC}\left(t\right)\) |
On Pension Mp |
OP |
PA LE A60PL |
|
A20PA PW |
|
\(\mathtt{OP}\left(t\right)=\frac{\left(-\mathtt{PA}\left(t\right)+\mathtt{LE}\left(t\right)\right)\cdot\mathtt{A60PL}\left(t\right)}{-60+\mathtt{LE}\left(t\right)}\) |
Pension Age y |
PA |
EPA LE |
LEEPA |
OP |
62.0 |
\(\mathtt{PA}\left(t\right)=\mathtt{ifelse}\left(\left(\mathtt{LE}\left(t\right)<67\right),62,62+\mathtt{LEEPA}\cdot\left(-67+\mathtt{EPA}\left(t\right)+\mathtt{LE}\left(t\right)\right)\right)\) |
Passing 20 Mp/y |
PASS20 |
BIRTHS |
|
A0020 A2040 PASS40 |
|
\(\mathtt{PASS20}\left(t\right)=\mathtt{delayn}\left(\mathtt{BIRTHS}, 20, \mathtt{init}(\mathtt{PASS20}), \mathtt{ORDER}\right)\) |
Passing 40 Mp/y |
PASS40 |
PASS20 |
|
A2040 A4060 PASS60 |
64.0 |
\(\mathtt{PASS40}\left(t\right)=\mathtt{delayn}\left(\mathtt{PASS20}, 20, \mathtt{init}(\mathtt{PASS40}), \mathtt{ORDER}\right)\) |
Passing 60 Mp/y |
PASS60 |
PASS40 |
|
A4060 A60PL DEATHS |
38.0 |
\(\mathtt{PASS60}\left(t\right)=\mathtt{delayn}\left(\mathtt{PASS40}, 20, \mathtt{init}(\mathtt{PASS60}), \mathtt{ORDER}\right)\) |
Population Growth Rate 1/y |
PGR |
BIRTHR DEATHR |
|
|
|
\(\mathtt{PGR}\left(t\right)=-\mathtt{DEATHR}\left(t\right)+\mathtt{BIRTHR}\left(t\right)\) |
Population Mp |
POP |
A0020 A2040 A4060 A60PL |
|
CPP CO2NFIP CO2EMPP DEBNE DFFNEUBNE EUPP CRUSP DRM FUP IUL RMSP TUC TUCERMP TUFRM PB15 BIRTHR DEATHR GDPP PSEP PSP |
|
\(\mathtt{POP}\left(t\right)=\mathtt{A0020}\left(t\right)+\mathtt{A2040}\left(t\right)+\mathtt{A4060}\left(t\right)+\mathtt{A60PL}\left(t\right)\) |
Pensioners per Worker p/p |
PW |
OP A20PA |
|
|
|
\(\mathtt{PW}\left(t\right)=\frac{\mathtt{OP}\left(t\right)}{\mathtt{A20PA}\left(t\right)}\) |
Warming Effect on Life Expectancy (1) |
WELE |
OW |
OWELE OW2022 |
LE |
|
\(\mathtt{WELE}\left(t\right)=\mathtt{ifelse}\left(\left(t>2000\right),\mathtt{max}\left(0,1+\mathtt{OWELE}\cdot\left(-1+\frac{\mathtt{OW}\left(t\right)}{\mathtt{OW2022}}\right)\right),1\right)\) |