The POPULATION sector

The variables

Vensim name Name Used variables Used parameters Variables using it Initial value Equation
Aged 0-20 years Mp A0020 PASS20 BIRTHS DR POP 2170.0 \(\frac{\mathrm{d}\mathtt{A0020}\left(t\right)}{\mathrm{d}t}=-\mathtt{PASS20}\left(t\right)+\mathtt{BIRTHS}\left(t\right)\)
Aged 20-40 years Mp A2040 PASS20 PASS40 A20PA BIRTHS DR POP 1100.0 \(\frac{\mathrm{d}\mathtt{A2040}\left(t\right)}{\mathrm{d}t}=-\mathtt{PASS40}\left(t\right)+\mathtt{PASS20}\left(t\right)\)
Aged 20-Pension Age Mp A20PA OP A2040 A4060 A60PL WAP PW \(\mathtt{A20PA}\left(t\right)=-\mathtt{OP}\left(t\right)+\mathtt{A2040}\left(t\right)+\mathtt{A4060}\left(t\right)+\mathtt{A60PL}\left(t\right)\)
Aged 40-60 Mp A4060 PASS60 PASS40 A20PA DR POP 768.0 \(\frac{\mathrm{d}\mathtt{A4060}\left(t\right)}{\mathrm{d}t}=-\mathtt{PASS60}\left(t\right)+\mathtt{PASS40}\left(t\right)\)
Aged 60 + Mp A60PL PASS60 DEATHS A20PA DR OP POP 382.0 \(\frac{\mathrm{d}\mathtt{A60PL}\left(t\right)}{\mathrm{d}t}=-\mathtt{DEATHS}\left(t\right)+\mathtt{PASS60}\left(t\right)\)
Birth Rate 1/y BIRTHR POP BIRTHS PGR \(\mathtt{BIRTHR}\left(t\right)=\frac{\mathtt{BIRTHS}\left(t\right)}{\mathtt{POP}\left(t\right)}\)
Births Mp/y BIRTHS OF A2040 FP FW A0020 BIRTHR PASS20 \(\mathtt{BIRTHS}\left(t\right)=\frac{\mathtt{FW}\cdot\mathtt{A2040}\left(t\right)\cdot\mathtt{OF}\left(t\right)}{\mathtt{FP}}\)
Cost of Extra Fertility Reduction (share of GDP) CEFR EFR CMFR \(\mathtt{CEFR}\left(t\right)=\mathtt{CMFR}\cdot\mathtt{EFR}\left(t\right)\)
Death Rate 1/y DEATHR POP DEATHS PGR \(\mathtt{DEATHR}\left(t\right)=\frac{\mathtt{DEATHS}\left(t\right)}{\mathtt{POP}\left(t\right)}\)
Deaths Mp/y DEATHS PASS60 A60PL DEATHR \(\mathtt{DEATHS}\left(t\right)=\mathtt{delayn}\left(\mathtt{PASS60}, \mathtt{LE60}, \mathtt{init}(\mathtt{DEATHS}), \mathtt{ORDER}\right)\)
Desired No of Children 1 DNC EGDPP EFR FM DNCA DNC80 DNCG DNCM OF \(\mathtt{DNC}\left(t\right)=\left(1-\mathtt{EFR}\left(t\right)\right)\cdot\left(1+\mathtt{DNCA}\cdot\left(-6.4+\mathtt{EGDPP}\left(t\right)\right)\right)\cdot\left(\mathtt{DNCM}+\left(\mathtt{DNC80}-\mathtt{DNCM}\right)\cdot e^{-\mathtt{DNCG}\cdot\left(-6.4+\mathtt{EGDPP}\left(t\right)\right)}\right)\cdot\mathtt{FM}\left(t\right)\)
Dependency Ratio p/p DR A0020 A2040 A4060 A60PL \(\mathtt{DR}\left(t\right)=\frac{\mathtt{A0020}\left(t\right)+\mathtt{A60PL}\left(t\right)}{\mathtt{A2040}\left(t\right)+\mathtt{A4060}\left(t\right)}\)
Extra Fertility Reduction (1) EFR IPP GEFR CEFR DNC \(\mathtt{EFR}\left(t\right)=\mathtt{ramp}\left(t,\frac{\mathtt{GEFR}}{\mathtt{IPP}\left(t\right)},2000,2000+\mathtt{IPP}\left(t\right)\right)\)
Effective GDP per Person kDollar/p/y EGDPP GDPP EGDPP TAHI OSF EGDPP DNC LE 6.4 \(\frac{\mathrm{d}\mathtt{EGDPP}\left(t\right)}{\mathrm{d}t}=\frac{-\mathtt{EGDPP}\left(t\right)+\mathtt{GDPP}\left(t\right)}{\mathtt{TAHI}}\)
Extra Pension Age y EPA IPP GEPA PA 0.0 \(\mathtt{EPA}\left(t\right)=\mathtt{ramp}\left(t,\frac{\mathtt{GEPA}}{\mathtt{IPP}\left(t\right)},2000,22000+\mathtt{IPP}\left(t\right)\right)\)
Fertility Multiplier (1) FM SSP2FA2022F MFM DNC \(\mathtt{FM}\left(t\right)=\mathtt{ifelse}\left(\left(\mathtt{SSP2FA2022F}>0\right),\mathtt{ifelse}\left(\left(t>2000\right),1+\mathtt{ramp}\left(t,\frac{1}{78}\cdot\left(-1+\mathtt{MFM}\right),2000,2100\right),1\right),1\right)\)
GDP per Person kDollar/p/y GDPP POP GDP NFCO2PP TPPUEBEE TPPUFFNEUBEE TUCP TURMP GDPPEROCCLR HWMGDPP PGDPP FB15 RGGDPP FRACAMGDPPL FRACAMGDPPT EGDPP IROTA PSSGDP \(\mathtt{GDPP}\left(t\right)=\frac{\mathtt{GDP}\left(t\right)}{\mathtt{POP}\left(t\right)}\)
Life Expectancy y LE LEM WELE EGDPP LEMAX LEA LEG LE60 OP PA 67.0 \(\mathtt{LE}\left(t\right)=\left(1+\mathtt{LEA}\cdot\left(-6.4+\mathtt{EGDPP}\left(t\right)\right)\right)\cdot\left(\mathtt{LEMAX}+\left(67-\mathtt{LEMAX}\right)\cdot e^{-\mathtt{LEG}\cdot\left(-6.4+\mathtt{EGDPP}\left(t\right)\right)}\right)\cdot\mathtt{LEM}\left(t\right)\cdot\mathtt{WELE}\left(t\right)\)
LE at 60 y LE60 LE \(\mathtt{LE60}\left(t\right)=-60+\mathtt{LE}\left(t\right)\)
Life Expectancy Multipler (1) LEM MLEM SSP2FA2022F LE \(\mathtt{LEM}\left(t\right)=\mathtt{ifelse}\left(\left(\mathtt{SSP2FA2022F}>0\right),\mathtt{ifelse}\left(\left(t>2000\right),1+\mathtt{ramp}\left(t,\frac{1}{78}\cdot\left(-1+\mathtt{MLEM}\right),2000,2100\right),1\right),1\right)\)
Observed Fertility 1 OF DNC FADFS BIRTHS \(\mathtt{OF}\left(t\right)=\mathtt{FADFS}\cdot\mathtt{DNC}\left(t\right)\)
On Pension Mp OP PA LE A60PL A20PA PW \(\mathtt{OP}\left(t\right)=\frac{\left(-\mathtt{PA}\left(t\right)+\mathtt{LE}\left(t\right)\right)\cdot\mathtt{A60PL}\left(t\right)}{-60+\mathtt{LE}\left(t\right)}\)
Pension Age y PA EPA LE LEEPA OP 62.0 \(\mathtt{PA}\left(t\right)=\mathtt{ifelse}\left(\left(\mathtt{LE}\left(t\right)<67\right),62,62+\mathtt{LEEPA}\cdot\left(-67+\mathtt{EPA}\left(t\right)+\mathtt{LE}\left(t\right)\right)\right)\)
Passing 20 Mp/y PASS20 BIRTHS A0020 A2040 PASS40 \(\mathtt{PASS20}\left(t\right)=\mathtt{delayn}\left(\mathtt{BIRTHS}, 20, \mathtt{init}(\mathtt{PASS20}), \mathtt{ORDER}\right)\)
Passing 40 Mp/y PASS40 PASS20 A2040 A4060 PASS60 64.0 \(\mathtt{PASS40}\left(t\right)=\mathtt{delayn}\left(\mathtt{PASS20}, 20, \mathtt{init}(\mathtt{PASS40}), \mathtt{ORDER}\right)\)
Passing 60 Mp/y PASS60 PASS40 A4060 A60PL DEATHS 38.0 \(\mathtt{PASS60}\left(t\right)=\mathtt{delayn}\left(\mathtt{PASS40}, 20, \mathtt{init}(\mathtt{PASS60}), \mathtt{ORDER}\right)\)
Population Growth Rate 1/y PGR BIRTHR DEATHR \(\mathtt{PGR}\left(t\right)=-\mathtt{DEATHR}\left(t\right)+\mathtt{BIRTHR}\left(t\right)\)
Population Mp POP A0020 A2040 A4060 A60PL CPP CO2NFIP CO2EMPP DEBNE DFFNEUBNE EUPP CRUSP DRM FUP IUL RMSP TUC TUCERMP TUFRM PB15 BIRTHR DEATHR GDPP PSEP PSP \(\mathtt{POP}\left(t\right)=\mathtt{A0020}\left(t\right)+\mathtt{A2040}\left(t\right)+\mathtt{A4060}\left(t\right)+\mathtt{A60PL}\left(t\right)\)
Pensioners per Worker p/p PW OP A20PA \(\mathtt{PW}\left(t\right)=\frac{\mathtt{OP}\left(t\right)}{\mathtt{A20PA}\left(t\right)}\)
Warming Effect on Life Expectancy (1) WELE OW OWELE OW2022 LE \(\mathtt{WELE}\left(t\right)=\mathtt{ifelse}\left(\left(t>2000\right),\mathtt{max}\left(0,1+\mathtt{OWELE}\cdot\left(-1+\frac{\mathtt{OW}\left(t\right)}{\mathtt{OW2022}}\right)\right),1\right)\)

The parameters

Vensim name Name Is used by Value
Cost of Max Fertility Reduction (share of GDP) CMFR CEFR 0.01
DNC in 1980 DNC80 DNC 4.3
DNCalfa<0 DNCA DNC 0.0
DNCgamma DNCG DNC 0.14
DNCmin DNCM DNC 1.2
Fraction Achieving Desired Family Size FADFS OF 0.8
Fertile Period FP BIRTHS 20.0
Fraction Women FW BIRTHS 0.5
Goal for Extra Fertility Reduction GEFR EFR 0.0
Goal for Extra Pension Age y GEPA EPA 0.0
LEalfa LEA LE 0.001
sLEeoPa>0: Life Expectancy Effect on Pension Age LEEPA PA 0.75
LEgamma LEG LE 0.15
LEmax LEMAX LE 85.0
Max Fertility Multiplier MFM FM 1.6
Max Life Expectancy Multiplier MLEM LEM 1.1
Observed Warming in 2022 deg C OW2022 WELE 1.35
sOWeoLE<0: Observed Warming Effect on Life Expectancy OWELE WELE -0.02
SSP2 Family Action from 2022 Flag SSP2FA2022F FM LEM 1.0
Time to adapt to higher income y TAHI EGDPP 10.0